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In two previous papers, we studied the problem of electronic properties in a system with long-ranged
helimagnetic order caused by itinerant electrons. A standard many-fermion formalism was used. The calcula-
tions were quite tedious because different spin projections were coupled in the action and because of the
inhomogeneous nature of a system with long-ranged helimagnetic order. Here we introduce a canonical trans-
formation that diagonalizes the action in spin space and maps the problem onto a homogeneous fermion
problem. This transformation to quasiparticle degrees of freedom greatly simplifies the calculations. We use the
quasiparticle action to calculate single-particle properties, in particular, the single-particle relaxation rate. We
first reproduce our previous results for clean systems in a simpler fashion, and then study the much more
complicated problem of three-dimensional itinerant helimagnets in the presence of an elastic relaxation rate
1 /� due to nonmagnetic quenched disorder. Our most important result involves the temperature dependence of
the single-particle relaxation rate in the ballistic limit �2T�F�1 for which we find a linear temperature
dependence. We show how this result is related to a similar result found in nonmagnetic two-dimensional
disordered metals.
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I. INTRODUCTION

In two previous papers, hereafter denoted by I and II,1,2

we considered various properties of clean itinerant helimag-
nets in their ordered phase at low temperatures. These papers
considered and discussed, in some detail, the nature of the
ordered state and, in particular, the Goldstone mode that re-
sults from the spontaneously broken symmetry. We also cal-
culated a variety of electronic properties in the ordered state
that are influenced by the Goldstone mode or helimagnon,
which physically amounts to fluctuations of the helical mag-
netization. For various observables, we found that couplings
between electronic degrees of freedom and helimagnon fluc-
tuations lead to a nonanalytic �i.e., non-Fermi-liquidlike�
temperature dependence at low temperature. For most quan-
tities, this takes the form of corrections to Fermi-liquid be-
havior, but in some cases, e.g., for the single-particle relax-
ation rate, the nonanalytic dependence constitutes the leading
low-temperature behavior.

A prototypical itinerant helimagnet is MnSi. At low tem-
peratures and ambient pressure, the ground state of MnSi has
helical or spiral order, where the magnetization is ferromag-
netically ordered in the planes perpendicular to some direc-
tion q, with a helical modulation of wavelength 2� / �q� along
the q axis.3 MnSi displays helical order below a temperature
Tc�30 K at ambient pressure with 2� / �q��180 Å. That is,
the pitch length scale is large compared to microscopic
length scales. Application of hydrostatic pressure p sup-
presses Tc, which goes to zero at a critical pressure pc
�14 kbar.4 Physically, the helimagnetism is caused by the
spin-orbit interaction, which breaks lattice inversion symme-
try. In a Landau theory this effect leads to a term of the form
m · ���m� in the Landau free energy, with m as the local
magnetization, and a prefactor proportional to �q�.5,6

In Papers I and II, we used a technical description based
on itinerant electrons subject to an effective inhomogeneous
external field that represents helimagnetic order, with heli-
magnon fluctuations coupled to the remaining electronic de-
grees of freedom. We emphasize that for the theory devel-
oped in either Papers I and II, or in the current paper and a
forthcoming Paper IV, it is irrelevant whether the helimag-
netism is caused by the conduction electrons or whether the
conduction electrons experience a background of helimag-
netic order caused by electrons in a different band. The
Gaussian or “noninteracting” part of the action was not di-
agonal in either spin or wave-number space and the latter
property reflected the fact that the system is inhomogeneous.
These features substantially complicated the explicit calcula-
tions performed in Paper II. In order to make progress be-
yond the discussion in Paper II and to discuss the effects of
quenched disorder in particular, it is therefore desirable to
find a technically simpler description. In the current paper,
our first main result is the construction of a canonical trans-
formation that diagonalizes the action in spin space and si-
multaneously makes the Gaussian action diagonal in wave-
number space. The new transformed action makes our
previous calculations much simpler than before. It also en-
ables us to extend our previous work in a number of ways. In
particular, we will treat the much more complicated problem
of the quasiparticle properties of helimagnets in the presence
of nonmagnetic quenched disorder.

The study of the electronic properties of disordered metals
has produced a variety of surprises over the past 30 years.
The initial work on this subject was mostly related to diffu-
sive electrons and the phenomena known as weak-
localization and/or Altshuler-Aronov �AA� effects �for re-
views see, e.g., Refs. 7 and 8�. In the clean limit, mode-mode
coupling effects analogous to the AA effects have been
shown to lead to a nonanalytic wave-number dependence of
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the spin susceptibility at T=0.9 More recently, disordered
interacting �via a Coulomb interaction� electron systems
have been studied in the ballistic limit, T��1, but still at
temperatures that are low compared to all energy scales other
than 1 /� with � as the elastic-scattering rate.10 Interestingly,
in this limit it has been shown that for two-dimensional �2D�
systems, the temperature correction to the elastic-scattering
rate is proportional to T, i.e., it shows non-Fermi-liquid be-
havior. In contrast, in three-dimensional �3D� systems the
corresponding correction is proportional to T2 ln�1 /T�, i.e.,
the behavior is marginally Fermi-liquidlike with a logarith-
mic correction.11 The second main result of the current paper
is that in the ballistic limit, the low-temperature correction to
the single-particle relaxation rate in ordered helimagnets is
linear in T. The technical reason for why a 3D disordered
itinerant helimagnet behaves in certain ways in close analogy
to a 2D nonmagnetic disordered metal will be discussed in
detail below. Transport properties, in particular, the electrical
conductivity, will be considered in a separate paper, which
we will refer to as Paper IV.12

The organization of this paper is as follows. In Sec. II we
introduce a canonical transformation that vastly simplifies
the calculation of electronic properties in the helimagnet
state. In Sec. III we calculate various single-particle and qua-
siparticle properties at low temperatures in both clean and
disordered helimagnetic systems. In the latter case we focus
on the ballistic limit �which is slightly differently defined
than in nonmagnetic materials�, where the various effects are
most interesting and which is likely of most experimental
interest given the levels of disorder in the samples used in
previous experiments. The paper is concluded in Sec. IV
with a summary and a discussion. Throughout this paper, we
will occasionally refer to results obtained in Papers I and II
and will refer to equations in these papers in the format �x.y�.

II. CANONICAL TRANSFORMATION TO
QUASIPARTICLE DEGREES OF FREEDOM

In this section we start with an electron action that takes
into account helical magnetic order and helical magnetic
fluctuations. The fundamental variables in this description

are the usual fermionic �i.e., Grassmann-valued� fields �̄��x�
and ���x�. Here x= �x ,�� is a four vector that comprises real-
space position x and imaginary time �, and � is the spin
index. Due to the helical magnetic order, the quadratic part
of this action is not diagonal in either the spin indices or in
wave-number space. We will see that there is a canonical
transformation, which leads �in terms of new Grassmann
variables� to an action that is diagonal in both spin and wave-
number spaces. This transformed action enormously simpli-
fies calculations of the electronic properties of both clean and
dirty helical magnetic metals.

A. Action in terms of canonical variables

In Paper II we derived an effective action for clean itin-
erant electrons in the presence of long-range helical magnetic
order and helical magnetic fluctuations interacting with the

electronic degrees of freedom. This action can be written as
�see Eq. �3.13� of Paper II�

Seff��̄,�� = S0��̄,�� +
�t

2

2
� dxdy 	ns

i�x�
s
ij�x,y�	ns

j�y� ,

�2.1�

where ns
i�x�= �̄��x����

i ���x� is the electronic-spin density,
�i�i=1,2 ,3� denote the Pauli matrices, 	ns

i =ns
i − �ns

i	 is the
spin-density fluctuation, �t is the spin-triplet interaction am-
plitude, and 
dx=
dx
0

1/Td�. Here, and in what follows, we
use units such that kB=
=1. In Eq. �2.1�, S0 denotes an
action,

S0��̄,�� = S̃0��̄,�� +� dx H0�x� · ns�x� , �2.2a�

where,

H0�x� = �t�ns�x�	 = �tm�x� �2.2b�

is proportional to the average magnetization m�x�= �ns�x�	.
In the helimagnetic state,

H0�x� = ��cos�q · x�,sin�q · x�,0� , �2.2c�

where q is the pitch vector of the helix, which we will take to
point in the z direction, q=qẑ, and �=�tm0 is the Stoner gap

with m0 as the magnetization amplitude. S̃0 in Eqs. �2.2a�,
�2.2b�, and �2.2c� contains the action for noninteracting band
electrons plus, possibly, an interaction in the spin-singlet
channel. Finally, fluctuations of the helimagnetic order are
taken into account by generalizing H0 to a fluctuating clas-
sical field H�x�=�tM�x�=H0+�t	M�x�, where M�x� repre-
sents the spin density averaged over the quantum-mechanical
degrees of freedom. 
s

ij�x ,y�= �	Mi�x�	Mj�y�	 in Eq. �2.1� is
the magnetic susceptibility in the helimagnetic state and the
action �Eq. �2.1�� has been obtained by adding a part that
governs the fluctuations 	M to the electronic part �see Eq.
�3.12� of Paper II� and then integrating out 	M.

The susceptibility 
s was calculated before, see Sec. IV E
in Paper I. The part of 
s that gives the dominant low-
temperature contributions to the various thermodynamic and
transport quantities is the helimagnon or Goldstone mode
contribution. In Paper I it was shown that the helimagnon is
a propagating mode with a qualitatively anisotropic disper-
sion relation. For the geometry given above, the helimagnon
is given in terms of magnetization fluctuations that can be
parameterized by �see Eq. �3.4� of Paper I�,

	Mx�x� = − m0 ��x�sin qz , �2.3a�

	My�x� = m0 ��x�cos qz . �2.3b�

	Mz=0 in an approximation that suffices to determine the
leading behavior of observables. In Eqs. �2.2a�, �2.2b�, and
�2.2c�, � is a phase variable. In Fourier space, the phase-
phase correlation function in the long-wavelength and low-
frequency limit is
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�k� � ���k���− k�	 =
1

2NF

q2

3kF
2

1

�0
2�k� − �i��2 , �2.4a�

with NF as the electronic density of states per spin at the
Fermi surface, kF as the Fermi wave number,13 i�� i�n
= i2�Tn �n=0, �1, �2, etc.� as a bosonic Matsubara fre-
quency, and k= �k , i��. If we write k= �k� ,kz� with k�

= �kx ,ky�, the pole frequency is

�0�k� = �czkz
2 + c�k�

4 . �2.4b�

Note the anisotropic nature of this dispersion relation, which
implies that kz scales as k�

2 , which in turn, scales as the
frequency or temperature, kz
k�

2 
T.14 This feature will
play a fundamental role in our explicit calculations in Sec. III
that relate 3D helimagnetic metals to 2D nonmagnetic met-
als, at least in the ballistic limit. In a weak-coupling calcula-
tion the elastic constants cz and c� are given by �see Eq.
�3.8� of Paper II�,

cz = �2q2/36kF
4 ,

c� = �2/96kF
4 . �2.4c�

The same result was obtained in Ref. 15; it holds for rota-
tionally invariant systems. Crystal-field effects break the ro-
tational symmetry and lead to a k�

2 term with a very small
prefactor in Eqs. �2.4a�–�2.4c� �see Paper I and the discus-
sion in Sec. II E below�.

This specifies the action given in Eq. �2.1�. In Fourier
space, and neglecting any spin-singlet interaction, it can be
written as

Seff��̄,�� = S0��̄,�� + Sint��̄,�� , �2.5a�

S0��̄,�� = �
p

�i� − �p��
�

�̄��p����p� + ��
p

��̄↑�p��↓�p + q�

+ �̄↓�p��↑�p − q�� , �2.5b�

Sint��̄,�� = −
�2

2

T

V
�

k


�k��	n↑↓�k − q� − 	n↓↑�k + q��

��	n↑↓�− k − q� − 	n↓↑�− k + q�� , �2.5c�

where V is the system volume and i�� i�n= i2�T�n+1 /2�
�n=0, �1, �2, . . .� is a fermionic Matsubara frequency,

n�1�2
�k� = �

p

�̄�1
�p���2

�p − k� , �2.5d�

and

	n�1�2
�k� = n�1�2

�k� − �n�1�2
�k�	 . �2.5e�

Here p= �p , i�� and q denotes the four vector �q ,0�. Else-
where in this paper, we use the notation q= �q�, which should
not lead to any confusion. In Eqs. �2.5a�–�2.5e�, �p=�p−�F,
with �F as the Fermi energy, and �p as the single-particle
energy-momentum relation. The latter we will specify in Eq.
�2.16� below.

In the above effective action, S0 represents noninteracting
electrons on the background of helimagnetic order that has

been taken into account in a mean-field or Stoner approxi-
mation. Fluctuations of the helimagnetic order lead to an
effective interaction between the electrons via an exchange
of helimagnetic fluctuations or helimagnons. This is reflected
by the term Sint and the effective potential is proportional to
the susceptibility 
.

B. Canonical transformation to quasiparticle variables

The action S0 in Eqs. �2.5a�–�2.5e� above is not diagonal
in either the spin index or the wave number. A cursory in-
spection shows that by a suitable combination of the fermion
fields, it is possible to diagonalize S0 in spin space. It is much
less obvious that it is possible to find a transformation that
simultaneously diagonalizes S0 in wave-number space. In
what follows we construct such a transformation, i.e., we
map the electronic helimagnon problem into an equivalent
problem, in which space is homogeneous.

Let us tentatively define a canonical transformation of the

electronic Grassmann fields �̄ and � to new quasiparticle
fields �̄ and �, which also are Grassmann valued, by

�̄↑�p� = �̄↑�p� + �p
��̄↓�p� , �2.6a�

�̄↓�p� = �̄↓�p − q� + �p
��̄↑�p − q� , �2.6b�

�↑�p� = �↑�p� + �p�↓�p� , �2.6c�

�↓�p� = �↓�p − q� + �p�↑�p − q� . �2.6d�

The coefficients � and � are determined by inserting Eqs.
�2.6a�–�2.6d� into Eq. �2.5b� and requiring this noninteract-
ing part of that action to be diagonal in the spin labels. This
requirement can be fulfilled by choosing them to be real and
frequency independent and is given by

�p = �p
� = − �p+q � �p =

1

2�
��p+q − �p + ���p+q − �p�2 + 4�2� .

�2.7�

The noninteracting part of the action in terms of these new
Grassmann fields is readily seen to be diagonal in both spin
and wave-number spaces.

To fully take into account the effect of the change of

variables from the fields �̄�p� and ��p� to the fields �̄�p� and
��p�, we also need to consider the functional integration that
obtains the partition function Z from the action via

Z =� D��̄,��eSeff��̄,��. �2.8a�

The transformation of variables changes the integration mea-
sure as follows:

D��̄,�� � �
p,�

d�̄��p�d���p� = �
p,�

J�p�d�̄��p�d���p� ,

�2.8b�

with a Jabobian
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J�p� = �1 + �p
2�2. �2.8c�

We can thus normalize the transformation by defining final
quasiparticle variables �̄ and � by

�̄↑�p� = ��̄↑�p� + �p�̄↓�p��/�1 + �p
2, �2.9a�

�̄↓�p� = ��̄↓�p − q� − �p−q�̄↑�p − q��/�1 + �p−q
2 ,

�2.9b�

�↑�p� = ��↑�p� + �p�↓�p��/�1 + �p
2, �2.9c�

�↓�p� = ��↓�p − q� − �p−q�↑�p − q��/�1 + �p−q
2 .

�2.9d�

In terms of these new Grassmann fields, the Jacobian is unity
and the noninteracting part of the action reads

S0��̄,�� = �
p,�

�i� − ���p���̄��p����p� . �2.10a�

Here �= �↑ ,↓���1,2� and

�1,2�p� =
1

2
��p+q + �p � ���p+q − �p�2 + 4�2� .

�2.10b�

The noninteracting quasiparticle Green’s function thus is

G0,��p� =
1

i� − ���p�
. �2.10c�

Physically, Eqs. �2.9a�–�2.9d� represent soft fermionic exci-
tations about the two Fermi surfaces that result from the
helimagnetism, splitting the original band. The resonance
frequencies �1,2 are the same as those obtained in Eq. �3.19�
in Paper II. We stress again that this Gaussian action is di-
agonal in wave-number space.

The interacting part of the action consists of two pieces.
One contains terms that couple the two Fermi surfaces. Be-
cause there is an energy gap, namely, the Stoner gap
�—between these surfaces—these terms always lead to ex-
ponentially small contributions to the electronic properties at
low temperatures, and will be neglected here. The second
piece is �in terms of the quasiparticle fields�

Sint��̄,�� = −
�2q2

8me
2

T

V
�

k


�k�	��k�	��− k� . �2.11a�

Here we have defined

��k� = �
p

��k,p��
�

�̄��p����p − k� , �2.11b�

with

��k,p� =
2me

q

�p − �p−k

�1 + �p
2�1 + �p−k

2
, �2.11c�

where me is the electron effective mass, and

	���k� = ���k� − ����k�	 . �2.11d�

An important feature of this result is the vertex function
��k ,p�, which is proportional to k for k→0. The physical
significance is that � is a phase and, hence, only the gradient
of � is physically meaningful. Therefore, the � susceptibility

 must occur with a gradient squared in Eqs. �2.11a�–�2.11d�.
In the formalism of Paper II this feature became apparent
only after complicated cancellations; in the current formal-
ism it is automatically built in. Also note the wave-number
structure of the fermion fields in Eqs. �2.11a�–�2.11d�; it the
same as in a homogeneous problem.

C. Nonmagnetic disorder

In the presence of nonmagnetic disorder there is an addi-
tional term in the action. In terms of the original Grassmann
variables, it reads

Sdis��̄,�� =� dxu�x��
�

�̄��x����x� . �2.12�

Here u�x� is a random potential that we assume to be gov-
erned by a Gaussian distribution with a variance given by

�u�x�u�y��dis =
1

2�NF�
	�x − y� . �2.13�

Here �. . .�dis denotes an average with respect to the Gaussian
probability distribution function and � is the �bare� elastic
mean-free time. Inserting Eqs. �2.8a�–�2.8c� into Eq. �2.12�
yields Sdis��̄ ,��. Ignoring terms that couple the two Fermi
surfaces �which lead to exponentially small effects at low
temperatures� yields

Sdis��̄,�� = �
k,p

�
i�

�
�

1 + �k�p

��1 + �k
2��1 + �p

2�
u�k − p�

� �̄��k,i�����p,i�� . �2.14�

D. Explicit quasiparticle action

So far we have been very general in our discussion. In
order to perform explicit calculations, we need to specify
certain aspects of our model. First of all, we make the fol-
lowing simplification. In most of our calculations below, we
will work in the limit where ��vFq=2�Fq /kF with vF as the
Fermi velocity; i.e., the Stoner splitting of the Fermi surfaces
is large compared to the Fermi energy times the ratio of the
pitch wave number to the Fermi momentum. Since the domi-
nant contributions to the observables will come from wave
vectors on the Fermi surface, this implies that we can replace
the transformation coefficients �p �Eq. �2.7�� by unity in Eq.
�2.14� and in the denominator of Eq. �2.11c�. In particular,
this means that the disorder potential in Eq. �2.14� couples to
the quasiparticle density,

Sdis��̄,�� = �
k,p

u�k − p��
i�

�
�

�̄��k,i�����p,i�� .

�2.15�
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Second, we must specify the electronic energy-
momentum relation �p. For reasons already discussed in Pa-
per II, many of the electronic effects in metallic helimagnets
are stronger when the underlying lattice and the resulting
anisotropic energy-momentum relation are taken into ac-
count, as opposed to working within a nearly free-electron
model. We will assume a cubic lattice, as appropriate for
MnSi, so any terms consistent with cubic symmetry are al-
lowed. The instability of ferromagnetism against helical or-
der for other lattices that lack inversion symmetry was stud-
ied in Ref. 16. To the quartic order in p, the most general �p
consistent with a cubic symmetry can be written as

�p =
p2

2me
+

�

2mekF
2 �px

2py
2 + py

2pz
2 + pz

2px
2� , �2.16�

with � as a dimensionless measure of deviations from a
nearly free-electron model. Generically one expects �
=O�1�.

With this model and, assuming ��qvF, which is typically
satisfied, given the weakness of the spin-orbit interaction, we
obtain for the interaction part of the action from Eqs.
�2.11a�–�2.11c�,

Sint =
− T

V
�

k,p1,p2

V�k;p1,p2��
�1

��̄�1
�p1 + k���1

�p1� − ��̄�1
�p1

+ k���1
�p1�	��

�2

��̄�2
�p2 − k���2

�p2� − ��̄�2
�p2

− k���2
�p2�	� , �2.17�

where the effective potential is

V�k;p1,p2� = V0
�k���k,p1���− k,p2� . �2.18a�

Here,

V0 = �2q2/8me
2, �2.18b�

and

��k,p� =
1

2�
�kz +

�

kF
2 �kzp�

2 + 2�k� · p��pz�� + O�k2� .

�2.18c�

The effective interaction is depicted graphically in Fig. 1.
Examining Eqs. �2.18a�–�2.18c� we see three important

features. First, the effective potential is indeed proportional
to k2
�k�. As was mentioned after Eqs. �2.11a�–�2.11d�, this
is required for a phase fluctuation effect. Second, the pres-
ence of the lattice, as reflected by the term proportional to �
in Eqs. �2.18a�–�2.18c�, allows for a term proportional to
k�

2 
�k� in the potential, which �by power counting� is large

compared to kz
2
, for reasons pointed out in the context of

Eqs. �2.4a�–�2.4c�. It is this part of the potential that results
in the leading and most interesting low-temperature effects
that will be discussed in Sec. III of this paper and in paper
IV. Also, as a result of this feature, the dominant interaction
between the quasiparticles is not a density interaction but
rather an interaction between stress fluctuations due to the
bilinear dependence on p of the dominant term in ��k ,p�.
Third, the effective interaction is long ranged due to the sin-
gular nature of the susceptibility 
�k� at long wavelengths
and at low frequencies �see Eqs. �2.4a�–�2.4c��. This is a
consequence of the soft mode—the helimagnon—that medi-
ates the interaction.

In summary, we now have the following quasiparticle ac-
tion:

SQP��̄,�� = S0��̄,�� + Sint��̄,�� + Sdis��̄,�� , �2.19a�

with S0 from Eqs. �2.10a�–�2.10c�, Sint from Eqs. �2.17� and
�2.18a�–�2.18c�, and Sdis given by Eq. �2.15�. The partition
function is given by

Z =� D��̄,��eSQP��̄,��, �2.19b�

with a canonical measure

D��̄,�� = �
p,�

d�̄��p�d���p� . �2.19c�

E. Effects of broken rotational invariance and screening

There are two effects that qualitatively change the above
results in the limit of very small wave numbers. First, our
considerations so far were for a rotationally invariant system.
In a real magnet, the underlying lattice structure, combined
with the spin-orbit interaction, breaks this symmetry. As was
shown in Papers I and II �see Eq. �2.23� of Paper I or �4.8� of
Paper II�, this leads to a term of order bczq

2k�
2 /kF

2—with b as
a number of O�1�—under the square root in the helimagnon
frequency �Eqs. �2.4a�–�2.4c��. The weakness of the spin-
orbit coupling, which is reflected in the q2 prefactor of the
k�

2 term, makes this a very small effect. Second, screening of
the quasiparticle interaction leads to a similar modification of
the resonance frequency in the effective potential as shown
in the Appendix. The net result is that 
�k� in the effective
potential �Eq. �2.18a�� is replaced by a susceptibility,


̃�k� =
1

2NF

q2

3kF
2

1

�̃0
2�k� − �i��2 , �2.20a�

where

�̃0
2�k� = c̃zkz

2 + b̃cz�q/kF�2k�
2 + c�k�

4 , �2.20b�

with

c̃z = cz�1 −
3

4
�1 + ��2 q2

kF
2 � �F

�
�2� �2.20c�

and

, iωp

iωp k , Ωi−

, iωp

k , iΩ

p k , iω+1

1 1

1 Ωi+ 2
−

2

22

FIG. 1. The effective quasiparticle interaction due to helimag-
nons. Note that the vertices depend on the quasiparticle momenta in
addition to the helimagnon momentum.
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b̃ = b − ��F/��2. �2.20d�

This puts a lower limit on the temperature or frequency
range where the isotropic helimagnon description is valid.
This lower limit is determined by the value of k�, for which
the k�

2 and the k�
4 terms in Eqs. �2.20a�–�2.20d� are of equal

value, and by the scaling of �0
T with k�. In the absence of
screening, this lower limit is given by Eq. �4.9� in Paper II,

T � Tso = b��q/kF�4. �2.21a�

Screening changes this condition to17

T � T̃so = �b̃���q/kF�4. �2.21b�

This lower limit reflects both the spin-orbit interaction ef-
fects and the screening and it is small of the order �q /kF�4.
We will therefore ignore this effect in the remainder of this
paper and return to a semiquantitative discussion of its con-
sequences in paper IV.

III. QUASIPARTICLE PROPERTIES

In this section we use the effective quasiparticle action
derived in Sec. II to discuss the single-particle properties of
an itinerant helimagnet in the ordered phase. In Sec. III A we
consider the elastic-scattering time in the helimagnetic state,
in Sec. III B we consider the effects of interactions on the
single-particle relaxation rate for both clean and disordered
helimagnets, and in Sec. III C we consider the effects of
interactions on the single-particle density of states for both
clean and disordered helimagnets.

A. Elastic relaxation time

Helimagnetism modifies the elastic-scattering rate, even
in the absence of interaction effects. To see this, we calculate
the quasiparticle self-energy from the action S0+Sdis from
Eqs. �2.10a�–�2.10c� and �2.14�. To the first order in the dis-
order, the relevant diagram is given in Fig. 2.

Analytically it is given by

��
�3��p,i�� =

− 1

8�NF�

1

V�
k

�1 + �p�k�2G0,��k,i�� , �3.1�

with G0 as the noninteracting Green’s function from Eq.
�2.10c�. For simplicity we put �=0 in Eq. �2.16�, i.e., we
consider nearly free electrons. In the limit qvF��, we obtain
for the elastic-scattering rate, 1 /�el=−2 Im ���p , i0�,

1

�el
=

1

�
�1 − �/�F, �3.2a�

In the opposite limit qvF��, we find

1

�el
=

1

4�
�1 − q/2kF + O��q/kF�2�� . �3.2b�

To the first order in the disorder and to zeroth order in
interactions, the disorder-averaged Green’s function is

G��p� =
1

i� − ���p� + i
2�el

sgn���
. �3.3�

B. Interacting single-particle relaxation rate

In this section we determine the single-particle relaxation
rate due to interactions and its modification due to disorder
in the ballistic limit.

1. Clean helimagnets

We first reproduce the results of Paper II for the
interaction-induced single-particle relaxation rate. This
serves as a check on our formalism and to demonstrate the
technical ease of calculations within the quasiparticle model
compared to the formalism in Papers I and II. To this end, we
calculate the quasiparticle self-energy for an action S0+Sint
from Eqs. �2.10a�–�2.10c�, �2.17� and �2.18a�–�2.18c�. To the
first order in the interaction, there are two self-energy dia-
grams that are shown in Fig. 3. The direct or Hartree contri-
bution �Fig. 3�a�� is purely real and, hence, does not contrib-
ute to the scattering rate. The exchange or Fock contribution
�Fig. 3�b�� is given by

��
�4b��p� =

− T

V
�

k

V�k;p − k,p�G0,��k − p� . �3.4�

In order to compare with the results given in Paper II, we
consider the Fermi surface given by �1�p�=0. The single-
particle relaxation rate is given by 1 /��k ,��=
−2 Im �1�k ,�+ i0�. With Eqs. �2.10a�–�2.10c�, �2.18a�–
�2.18c� in Eq. �3.4�, we find

p, iω p, iωk, iω

p−k

FIG. 2. Quasiparticle self-energy due to quenched disorder. The
directed solid line denotes the Green’s function, the dashed lines
denote the disorder potential, and the cross denotes the disorder
average.

p, iω p, iω p, iω p, iω

p−k,i Ω

k, iω Ω−i

(b)

k=0,i Ω = 0

p, iω ’’

(a)

FIG. 3. �a� Hartree and �b� Fock contributions to the quasipar-
ticle self-energy due to the effective interaction potential V �dotted
line�.
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1

��k,��
= 2�

−�

�

du�nB� u

T
� + nF� � + u

T
�� � V��p

− k;k,p;u�	�� + u − �1�p�� . �3.5�

Here nB�x�=1 / �ex−1� and nF�x�=1 / �ex+1� are the Bose and
Fermi distribution functions, respectively, and
V��k ;p1 ,p2 ;u�=Im V�k= �k , i �→u+ i0� ;p1 ,p2� is the
spectrum of the potential. On the Fermi surface, �=0 and
�1�k�=0, we find for the relaxation rate 1 /��k��1 /��k ,�
=0�,

1

��k�
= Ck

kx
2ky

2�kx
2 − ky

2�2

�kx
2Ax

2 + ky
2Ay

2�3/2�T

�
�3/2

. �3.6a�

The quantities Ax,y and Ck are defined as

Ax,y = 1 +
�

kF
2 �ky,x

2 + kz
2� , �3.6b�

and

Ck =
B�4

8�kF
5

kz
2

kF
2

q3kF

me
2 , �3.6c�

with

B =
48

61/4�
0

�

dxdz
x2

�z2 + x4

1

sinh�z2 + x4
. �3.6d�

They are identical with the objects defined in Eq. �3.29� in
Paper II, provided the latter are evaluated to the lowest order
in q /kF. The temperature dependence for generic �i.e., kx
�ky� directions in wave-number space is thus

1

��k�
� �4�� q

kF
�6� �F

�
�2� T

Tq
�3/2

, �3.7�

in agreement with Eq. �3.29d� in Paper II. Tq is a temperature
related to the length scale where the helimagnon dispersion
relation is valid, �k��q. Explicitly, in a weakly coupling ap-
proximation, it is given by

Tq = �q2/6kF
2 , �3.8�

see the definition after Eq. �3.9� in Paper II. Tq also gives the
energy or frequency scale where the helimagnon crosses over
to the usual ferromagnetic magnon �see the discussion in
Sec. IV A of Paper II�.

The most interesting aspect of this result is that at low
temperatures, it is stronger than the usual Fermi-liquid T2

dependence and nonanalytic in T2. Also note the strong an-
gular dependence of the prefactor of the T3/2 in Eq. �3.6a�.
The experimental implications of this result have been dis-
cussed in Paper II.

2. Disordered helimagnets in the ballistic limit

We now consider effects to the linear order in the
quenched disorder. These can be considered disorder correc-
tions to the clean relaxation rate derived in Sec. III B 1 or
temperature corrections to the elastic relaxation rate. The
small parameter for the disorder expansion turns out to be

	 = 1/���F��2T/� � 1. �3.9�

That is, the results derived below are valid at weak disorder
�F���� /T or at intermediate temperature T�� / ��F��2. This
can be seen from an inspection of the relevant integrals in the
disorder expansion and will be discussed in more detail in
Paper IV. For stronger disorder or for lower temperature, the
behavior of the quasiparticles is diffusive and will be dis-
cussed elsewhere.18 The ballistic regime in a helimagnet is
different from that in a system of electrons interacting via a
Coulomb interaction, where the condition corresponding to
Eq. �3.9� reads T��1.10

To the first order in the disorder, there are two types of
diagrammatic contributions to the single-particle relaxation
rate: �i� diagrams that are formally the same as those shown
in Fig. 3, except that the solid lines represent the disorder-
averaged Green’s function given by Eq. �3.3�, and �ii� dia-
grams that have one explicit impurity line. The latter are
shown in Fig. 4. It is easy to show that the various Hartree
diagrams do not contribute. The class �i� Fock contribution to
the self-energy is given by Eq. �3.4� with G0,� replaced by
G� from Eq. �3.3�.

Power counting shows that �1� the leading contribution to
the single-particle relaxation rate in the ballistic limit is pro-
portional to T, �2� the diagrams of class �i� do not contribute
to this leading term, and �3� of the diagrams of class �ii� only
diagram �a� in Fig. 4 contributes. Analytically, the contribu-
tion of this diagram to the self-energy is

��
�5a��p,i�� � ��

�5a��i�� =
− 1

2�NF�

T

V �
k,i�

1

V�
p�

V�k,i�;p�

− k,p�� � G�
2�p�,i��G��p� − k,i� − i�� .

�3.10�

Notice that ��5a� does not depend on the wave vector. This
leads to the following leading disorder correction to the clean
single-particle rate in Eqs. �3.6a�–�3.6d�:

	�1/��p�� � 	�1/��

=
V0

2�NF�

1

V�
k
�

−�

� du

�
nF�u/T�
��k,u�Im L++,−�k� .

�3.11a�

Here 
� is the spectral function of the susceptibility in Eqs.
�2.4a�–�2.4c�,

(b)(a)

(c) (d) (e)

’’ ’

FIG. 4. �a� and �b� Fock and �c-e� Hartree contributions to the
self-energy in the ballistic limit. See the text for additional
information.
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��k,u� = Im 
�k,i� → u + i0� =
�

12NF

q2

kF
2

1

�0�k�
�	�u

− �0�k�� − 	�u + �0�k��� , �3.11b�

and L++,− is an integral that will also appear in the calculation
of the conductivity in paper IV,

L++,−�k� =
1

V
�

p
��k,p���k,p − k�GR

2�p�GA�p − k�

= i�22�

3

NFme
2

�2kF
2 + O�1/�,k�

2 � , �3.11c�

with GR,A�p�=G1�p , i�→ � i0� as the retarded and advanced
Green’s functions.

Inserting Eqs. �3.11b� and �3.11c� into Eq. �3.11a� and
performing the integrals, yields �for the leading temperature-
dependent contribution to 	�1 /���,

	�1/�� =
�2� ln 2

12�6�
� q

kF
�5�F

�

T

Tq
. �3.12�

Notice that 	�1 /�� has none of the complicated angular
dependence seen in the clean relaxation rate �Eq. �3.6a�–
�3.6d��. While quenched disorder is expected to make the
scattering process more isotropic in general, it is quite re-
markable that there is no angular dependence whatsoever in
this contribution to 	�1 /��.

C. Single-particle density of states

The single-particle density of states, as a function of the
temperature and the energy distance � from the Fermi sur-
face, can be defined in terms of the Green’s functions by7

N��,T� =
1

�V
�

p
�
�

Im G��p,i� → � + i0� . �3.13�

Here G is the fully dressed Green’s function. The interaction
correction to N, to the first order in the interaction, can be
written

	N��� =
− 1

�V
�

p
�
�

Im�G�
2�p,i�����p,i���i�→�+i0,

�3.14�

with the dominant contribution to the self-energy � given by
Eq. �3.10�. From the calculation in Sec. III B 2 we know that
the leading contribution to � is of order T /�, and the integral
over the Green’s functions is potentially of O�� T0�, so 	N
potentially has a contribution of O��0T�. However, the lead-
ing contribution to the self-energy is momentum independent
�see Eq. �3.10��; hence, the momentum integral in Eq.
�3.14�—as far as the leading term is concerned—is over a
retarded Green’s function squared and thus of O��0T0�. The
leading �by power counting� contribution to 	N thus has a
zero prefactor and we concluded that, to this order in the
interaction, there is no interesting contribution to the
temperature-dependent density of states.

IV. DISCUSSION AND CONCLUSION

In summary, there have been two important results in this
paper. First, we have shown that there is a canonical trans-
formation that diagonalizes the action for helimagnets in the
ordered state in spin space and, in the clean limit, maps the
problem onto a homogenous fermion action. This transfor-
mation enormously simplifies the calculations of electronic
properties in an itinerant electron system with long-ranged
helimagnetic order. As was mentioned in Sec. I, our model
and conclusions are valid whether or not the helimagnetism
is due to the conduction electrons. We have also discussed
the effect of screening on the effective interaction that was
first derived in Paper II. We have found that screening makes
the interaction less long ranged as is the case for a Coulomb
potential. However, in contrast to the latter, screening does
not introduce a true mass in the effective electron-electron
interaction in a helimagnet. Rather, it removes the qualitative
anisotropy characteristic of the unscreened potential in a ro-
tationally invariant model and introduces a term similar to
one that is also generated by the spin-orbit interaction in a
lattice model.

We have used the transformed action to compute a num-
ber of the low-temperature quasiparticle properties in a heli-
magnet. Some of the results derived here reproduce previous
results that were obtained with more cumbersome methods
in Paper II. We then added quenched nonmagnetic disorder
to the action and considered various single-particle observ-
ables in the ballistic limit. All of these results are new. The
second important result in this paper is our calculation of the
single-particle relaxation rate in systems with quenched dis-
order in the ballistic limit, �2T�F

2 /��1, where we find a
linear temperature dependence. This non-Fermi-liquid result
is to be contrasted with the previously derived T3/2 leading
term in clean helimagnets and the usual T2 behavior in clean
Fermi liquids.

In Paper IV of this series, we will treat the interesting
problem of transport in clean and weakly disordered electron
systems with long-ranged helimagnetic order. Specifically,
we will use the canonical transformation introduced here to
compute the electrical conductivity. In the clean limit we will
recover the result derived previously in Paper II, while in the
ballistic regime, we find a leading temperature dependence
proportional to T. This linear term is directly related to the T
term found above for the single-particle relaxation rate. For
the case of the electrical conductivity, the T term is much
stronger than either the Fermi-liquid contribution �T2� or the
contribution from the helimagnon scattering in the clean
limit �T5/2�.

A detailed discussion of the experimental consequences of
these results will be given in paper IV. There we will also
give a complete discussion of the limitations of our results
and, in particular, of the various temperature scales in the
problem, including the one introduced by screening the ef-
fective potential.

The linear temperature terms found here for the various
relaxation times in bulk helimagnets are closely related to the
linear T terms found in two-dimensional nonmagnetic met-
als, also in a ballistic limit.10 The analogy between 3D heli-
magnets and 2D nonmagnetic materials is a consequence of

KIRKPATRICK, BELITZ, AND SAHA PHYSICAL REVIEW B 78, 094407 �2008�

094407-8



the anisotropic dispersion relation of the helical Goldstone
mode or helimagnons. Technically, a typical integral that ap-
pears in the bulk helimagnet case is of the form

� dkz� dk�k�
2 	��2 − kz

2 − k�
4 �f�kz,k��

�� dk�k�
2 ���2 − k�

4 �
��2 − k�

4
f�kz = 0,k�� ,

and the dependence of f on kz can be dropped since it does
not contribute to the leading temperature scaling. The pref-
actor of the k� dependence of f is of O�1� in a scaling sense.
As a result, the 3D integral over k behaves effectively like
the integral in the 2D nonmagnetic case. Physically the slow
relaxation in the plane perpendicular to the pitch vector
makes the physics two dimensional.
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APPENDIX: SCREENING OF THE QUASIPARTICLE
INTERACTION

In this , we investigate the effects of screening on the
quasiparticle interaction potential shown in Eqs. �2.18a�–
�2.18c� and Fig. 1. In the usual ladder or random-phase ap-
proximation, the screened potential Vsc is determined by an
integral equation that is shown graphically in Fig. 5 and ana-
lytically given by

Vsc�k;p1,p2� = V�k;p1,p2� −
T

V
�
p3

V�k;p1,p3� � �
�

G0,��p3

− k�G0,��p3�Vsc�k;p3,p2� . �A1�

It is convenient to define a screening factor fsc by writing

Vsc�k;p1,p2� = V�k;p1,p2�fsc�k;p1,p2� . �A2�

Inserting Eq. �A2� in Eq. �A1� leads to an algebraic equation
for fsc with a solution,

fsc�k;p1,p2� =
1

1 + V0
�k� 1
V�p

��k,p���− k,p�
L�p,i��
,

�A3a�

where


L�p,i�� = − T�
i�

�
�

G0,��p,i��G0,��p,i� − i�� .

�A3b�

The most interesting effect of the screening is at k→0 and,
therefore, we need to consider only 
L�p , i�= i0��
L�p�.
This is essentially the Lindhard function and we use the ap-
proximation �1 /V��p�p�n
L�p��kF

nNF. Neglecting prefactors
of O�1�, we thus obtain

Vsc�k;p1,p2� = V0
sc�k���k,p1���− k,p2� , �A4a�

where


sc�k� =
1

2NF

q2

3kF
2

1

�̃0
2�k� − �i��2 . �A4b�

Here

�̃0
2�k� = c̃zkz

2 − V0
�2

24

q2

kF
2�2k�

2 + c�k�
4 , �A4c�

with

c̃z = cz�1 −
3

4
�1 + ��2 q2

kF
2 � �F

�
�2� . �A4d�

We see that the screening has two effects on the frequency
�̃0 that enters the screened potential instead of the helimag-
non frequency �0. First, it renormalizes the elastic constant
cz by a term of order �q /kF�2��F /��2. This is a small effect as
long as qvF��. Second, it leads to a term proportional to k�

2

in �̃0
2.17 A term of that order also exists in the helimagnon

frequency proper, since the cubic lattice in conjunction with
spin-orbit effects breaks the rotational symmetry that is re-
sponsible for the absence of a k�

2 term in �0 �see Eq. �2.23�
in Paper I or Eq. �4.8� in Paper II� and it is of order
bczq

2k�
2 /kF

2 with b=O�1�. The complete expression for �̃0
2 is

thus given by Eqs. �2.20a�–�2.20d�.
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